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SUMMARY

This work presents a high-resolution scheme combined with a moving mesh method for approximating
the solution of shallow water system. The main difficulties in deriving stable and convergent numerical
approximations can be due to solutions that vanish in nontrivial parts of domain such as dry states in
water flows. In these situations, the coupling between characteristic fields gradually increases as water
height is stepped down. The basic methodology in our method is to avoid characteristic decompositions
in the spatial discretization. Moving dry regions within the computing domain are captured without the
appearance of negative values. The high-resolution properties of the scheme as well as its resistance to
mesh orientation gives the great potential of the moving mesh methods for reducing computational costs
without sacrificing the overall level of accuracy, which is demonstrated in a variety of hydraulic examples.
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1. INTRODUCTION

Shallow-water equations (SWEs) are used to describe coastal, estuarine and inland water flows
under the action of gravity force. SWEs express a nonhomogeneous system of conservation laws
in terms of local water height and discharge.

Designing an efficient and robust numerical method for this model is a stimulating task: solutions
are typically nonsmooth, they may contain hydraulic jumps and flood waves. In addition, many
real applications introduce further complications such as variable topography and evolving dry
regions within the domain. Dealing with dry bed situations needs special attention. The difficulty
arises from the fact that the coupling between characteristic fields in SWE increases as the water

∗Correspondence to: M. Louaked, Laboratoire de Mathématiques Nicolas Oresme, Université de Caen, Bd du
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height decreases. This increased coupling is a reflection of the fact that strict hyperbolicity is lost
and the eigenvalues and eigenvectors coalesce at the dry regions.

In recent years, major progress has been made in numerical aspects of the field and several
high-resolution schemes have been suggested in the literature to approximate the shallow-water
system [1, 2]. Many of these modern approximations employ a set of eigenvalues of the Jacobian
matrix and an appropriate linearized characteristic decomposition. For all the reasons cited above,
this class of schemes may fail near or with dry conditions.

In this work, we present a method that is highly efficient to compute flows over wet or dry
surfaces. A TVD component-wise limiting strategy is designed to restrict or suppress oscillations
near discontinuities. The spatial discretization is a Riemann-solver-free recipe and field-by-field
decompositions are avoided.

The principal feature of nonlinear shallow-water system, manifested in the physical phenomenon
of breaking of waves, is the breakdown of classical solutions and the development of discontinuities
that propagate as hydraulic jumps. This leads us to try to concentrate the computational effort
where it is needed most. For problems in these areas, very fine meshes are often required over a
small portion of the physical domain to resolve large solution variations there.

Significant improvements in accuracy and efficiency can be gained by using moving mesh
methods for problems having large solution variations. The moving mesh approach is to keep a
fixed numbers of mesh points and to move them according to a prescribed algorithm.

Numerical results are given to illustrate the accuracy of the method.
The structure of the paper is as follows. The next section presents the SWEs in general coordi-

nates. Section 3 deals with the high-resolution scheme. The moving mesh method and its imple-
mentation are described in Section 4. The results of the numerical experiments are presented in
Section 5. Finally, Section 6 concludes the paper.

2. GOVERNING EQUATIONS

SWEs form a depth-integrated model for free surface flow of a fluid under the influence of gravity.
In the model, it is assumed that the surface perturbation is much smaller than the typical horizontal
length scale.

Since the computation is carried out in the computational plan, the shallow-water system can
be cast in the strong conservation law form in the computational �−� plan as
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Q=(uh,vh) is the unit-width discharge and g is the gravitational acceleration.
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3. THE HIGH-RESOLUTION SCHEME—A MODIFIED FLUX APPROACH

3.1. Wave equation

Consider the scalar wave equation:

ut+au�=0, a>0 (4)

Let unj be the numerical solution of (4) at �= j��, t=n�t with �� the spatial mesh size and �t
the time step.

Following Sweby [3], the Lax–Wendroff method is written to look like an upwind part with an
additional limited amount of anti-diffusive flux

un+1j =unj−�

{
1+ 1

2
(1−�)

[
�(r+j )

r+j
−�(r+j−1)

]}
�unj−1/2 with r+j =

�unj−1/2
�unj+1/2

(5)

Here

�= a�t

��
, �unj+1/2=unj+1−unj and �unj−1/2=unj−unj−1

The flux limiter � is defined under Harten’s TVD inequalities [4].

3.2. Nonlinear scalar case

This approach of high resolution with flux limiter is extended to nonlinear scalar case in the
framework of Sweby [3]. An explicit conservative difference scheme

un+1j =unj−�(h j+1/2−h j−1/2) (6)

serves as a consistent approximation to scalar conservation law

ut+ f (u)�=0 (7)

Let

(� f j+1/2)+= f (u j+1)−gEj+1/2, (� f j+1/2)−= f (u j )−gEj+1/2 (8)

and

r+j =(� f j−1/2)+/(� f j+1/2)+, r−j =(� f j+1/2)−/(� f j−1/2)− (9)

Here gE is the flux of any E-scheme, i.e. it is Lipschitz continuous, and for all u’s between u j and
u j+1, it satisfies sgn(u j+1−u j+1)(gEj+1/2− f (u))�0. The numerical flux h j+1/2 with the limiter
� is defined by

h j+1/2=gEj+1/2+ 1
2�(r+j )�+j+1/2(� f j+1/2)+− 1

2�(r−j+1)�
−
j+1/2(� f j+1/2)− (10)

with �+j+1/2= 1
2 (1−�+j+1/2), �−j+1/2= 1

2 (1+�−j+1/2), and �+j+1/2, �−j+1/2 are the local Courant–
Friedrichs–Lewy (CFL) numbers.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1391–1397
DOI: 10.1002/fld



1394 M. LOUAKED

3.3. Nonlinear system

Among the methods available for extending the scheme described in the previous paragraph to
nonlinear systems, the characteristic decomposition is the most common. This procedure is used
to approximate the wave propagation locally. The characteristic equations are defined as

�t+��x=0 (11)

where �= R−1U , A= R�R−1, A is the Jacobian of the flux function and � is a diagonal matrix
with the eigenvalues of A.

This approach is valid only if the eigenvalues of the flux Jacobian are real and distinct.
In order to avoid the characteristic decompositions and as specified by Liu and Lax [5] on

the importance and potential of flux splitting approach, we write the 1D homogeneous nonlinear
system as

(
U

J

)
t
+ F̃+(U )�+ F̃−(U )�=0 (12)

Here, the splitting is based on the so-called local flux splitting [5]:
F̃(U )= F̃+(U )+ F̃−(U ) (13)

To generalize scheme (10) and to achieve second-order accuracy in time we propose to use a
second-order accurate Runge–Kutta method

U∗j = Un
j −�[J j+1/2 F̃+j+1/2− J j−1/2 F̃+j−1/2+ J j+1/2 F̃−j+1/2− J j−1/2 F̃−j−1/2]

U∗∗j = U∗j −�[h j+1/2−h j−1/2]
Un+1

j = 1
2U

n
j + 1

2U
∗∗
j

(14)

The adapted numerical flux can be expressed as

h j+1/2=gEj+1/2+ 1
2�(r+j )(� f j+1/2)+− 1

2�(r−j+1)(� f j+1/2)−

with (� f j+1/2)+= J j+1/2[F̃∗+j+1− F̃+j ] and (� f j+1/2)+= J j+1/2[F̃−j+1− F̃∗+j ] (15)

For the 2D shallow-water system, we use the well-known dimension-by-dimension technique.

4. THE MOVING MESH METHOD

This section presents a moving mesh technique as introduced by Tang and Tang [6]. The adaptive
moving mesh is generated by transforming the uniform mesh in the computational domain �c to
cluster grid points at the regions of the physical domain �p, where the solution has large gradients.
In what follows, we present the 1D version of the method.
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4.1. Mesh adaptation

To derive the coordinate transformation, we use the equidistribution principle. The mesh map is
provided by the minimizer

E(�)= 1

2

∫
�p

�−1(�x )2 dx (16)

In practice, we solve the following equivalent equation:

(�x�)�=0 (17)

By using central difference approximations and Gauss–Seidel iteration we obtain the moving mesh
equation:

�(u[�]j+1/2)(x
[�]
j+1−x [�+1]j )−�(u[�]j−1/2)(x

[�+1]
j −x [�+1]j−1 )=0 (18)

4.2. Moving mesh algorithm

The following algorithm summarizes the crucial stages of the adaptive mesh method.

Algorithm
Determine an initial uniform mesh: x0j = xL+ j xR−xLN , j=0, . . . ,N .
while tn<T do

repeat
�=0; x [0]j = xnj ; U

[0]
j =Un

j , j=0, . . . ,N .
Solve the mesh redistribution equation by Gauss–Seidel iteration (18) to move
grid {x [�]j } to {x [�+1]j }.
Interpolating the approximate solution Un on the new grid.

until ���max or ‖x [�+1]−x [�]‖��
Compute the solution one time step Un+1 using the high-resolution method (14).

end while

Remark
The method of interpolation is based on the conservative approach introduced by Tang and Tang [6].
This technique allows the resulting solution to satisfy the most fundamental properties relating to
the conservation laws equations. The above algorithm preserves the monotonic order of x [�]:

x [�]j+1>x [�]j �⇒ x [�+1]j+1 >x [�+1]j , j=0, . . . ,N
To avoid very singular meshes due to local gradient change, a regularization of the monitor function
is applied � j+1/2← 1

4 (� j−1/2+2� j+1/2+� j+3/2).

5. NUMERICAL RESULTS

Multiple tests have been developed. In our computations, the CFL condition is

max((|V�|+√gh	)�t/��, (|V�|+
√
gh
)�t/��)�0.4
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Figure 1. Heights of water flow for tests 1 and 2 for time T =0.1 and 5, respectively.

Figure 2. Geometry, mesh and contour plot of the steady solution for the symmetric channel
constriction with 51×51 grid points.

where V�=uy�−vx�, V�=vx�−uy�, 	=
√
x2�+ y2� and 
=

√
x2�+ y2� .

5.1. Test 1: dam break problem

At time t=0, the barrier of a wide channel with h1=1 and h2=10−10, the heights of the water
upstream and downstream are suddenly removed. The flow consists of a bore traveling downstream
and a rarefaction wave traveling upstream (Figure 1).

5.2. Test 2: generation of a dry bed

At time t=0, the conditions have been chosen in order to obtain two rarefaction waves separated
by a dry bed. The water depth is 0.1m and the initial velocity is 3 and −3m/s on the left- and
right-hand sides of the discontinuity, respectively. The latter is located at the channel mid-length.

5.3. Test 3: symmetric channel constriction

The channel wall is symmetrically constricted from both sides with angle �=5. The initial and
inflow conditions are the height h0=1 and Froud number 2.5 (Figure 2).
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6. CONCLUSION

We have presented a numerical scheme for SWE, which offers significant improvement over
available methods in terms of simplicity, adaptability and resolution.
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